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ABSTRACT

A series of tests was conducted to monitor atmospheric leakage rate and condensate

production in NASA's Biomass Production Chamber (BPC). Water was circulated through

the 64 plant culture trays inside the chamber during the tests but no plants were present.

Environmental conditions were set to a 12-hr photoperiod with either a matching 26°C

(light) / 20°C (dark) thermoperiod, or a constant 23°C temperature. Leakage, as deter-

mined by carbon dioxide decay rates, averaged about 9.8% for the 26°C / 20°C regime and

7.3% for the constant 23°C regime. Increasing the temperature from 20°C to 26°C caused a

temporary increase in pressure (up to 0.5 kPa) relative to ambient, while decreasing the

temperature caused a temporary decrease in pressure of similar magnitude. Little pressure

change was observed during transition between 23°C (light) and 23°C (dark). The lack of

large pressure events under isothermal conditions may explain the lower leakage rate ob-

served.

When only the plant support inserts were placed in the culture trays, condensate

production averaged about 37 liters per day. Placing acrylic germination covers over the

tops of culture trays reduced condensate production to about 7 liters per day. During both

tests, condensate production from the lower air handling system was 60% to 70% greater

than from the upper system, suggesting imbalances exist in chilled and hot water flows for

the two air handling systems.

Results indicate that atmospheric leakage rates are sufficiently low to measure CO s ex-

change rates by plants and the accumulation of certain volatile contaminants (e.g.,

ethylene). Control system changes are recommended in order to balance operational dif-

ferences (e.g., humidity and temperature) between the two halves of the chamber.



INTRODUCTION

With the capability to tightly seal the Biomass Production Chamber (BPC) at Kennedy

Space Center, FL, unique measurements for large stands (20 m z) of plants have been pos-

sible (Prince et al., 1987). These measurements include plant stand CO 2 and O 2 exchange,

transpiration of water, mineral uptake from nutrient solutions, and the accumulation of of-

ten undetected atmospheric contaminants. Detailed reports on the various components

and subsystems of the BPC have been published elsewhere (Prince et al., 1987; Sager et al.,

1988), as have results from preliminary biological tests and gas exchange rates (Wheeler et

a/., 1990; Wheeler and Sager, 1990).

Past tests of the atmospheric seal integrity of the BPC have been conducted on a

qualitative basis by searching for leakage points of helium or halon gas pumped into the

chamber, and on a quantitative basis by tracking the decay rate of elevated levels of CO 2

(without plants in the chamber). Results from these tests have ranged from greater than

20% of the chamber volume per day early in chamber operation, to as low as 2% of the

volume per day (J.H. Drese, unpublished; see also, Wheeler et al., 1990). Major improve-

ments in reducing the leakage rate resulted after the flexible air duct connectors were

coated with a silicone sealant (RTV) and pneumatic seals were added to the chamber entry

doors (Wheeler et al., 1990).

Previous leakage tests have been conducted under isothermal conditions and thus not

subjected to any pressure changes that might be encountered during a typical diurnal ther-

moperiod that might be used to grow crops. In this report, leakage rates were measured

with a 26°C / 20"C diurnal thermoperiod (identical to conditions used to grow soybeans for

crop tests) and compared to rates observed with constant 23°C (isothermal) conditions.

The report also presents data on the production of condensate water from the chilled water

coils of the heat exchange system during the leak tests. Results from this latter data set will

provide an estimate of the upper limit of condensate water that can be attributed to direct

evaporation, in comparison to transpiration (from leaves) during plant tests.

lly



METHODS AND MATERIALS

Prior to starting the tests, the condensate tanks for the air handling systems were

emptied and the carbon dioxide (CO2) concentration inside the chamber was raised to

about 2000 ppm. Tests lasted from approximately 30 to 60 hours and were conducted be-

tween the 2000 and 1500 ppm CO 2 range to minimize and effects of any variation in back-

ground CO 2 levels (Kimball, 1990). Doors were kept closed and pneumatic seals were ac-

tivated for the duration of the testing. The chamber environment was set to the following

conditions: a 12-hour light / 12-hour dark photoperiod (on 06:00 to 18:00, off 18:00 to

06:00), with either 26°C during the light and 20°C during the dark, or a constant 23°C (light

and dark). Relative humidity ranged from 55% to 70% throughout the tests. Both en-

vironmental regimes match temperature conditions used from previous crop tests in the

BPC with soybean (26°C / 200C) and lettuce (constant 23°C). Throughout the tests, water

was circulated continuously to the 64 plant culture trays inside the chamber (total tray area

of approximately 16 m2). Trays were either covered with white, acrylic "germination"

covers (3 mm thick), or left uncovered with only the plant support inserts (see Prince and

Knott, 1989) positioned inside each tray. Nutrient solution return gutters were completely

covered for both tests. Typically, germination covers are used during the first 2 to 5 days of

plant tests, after which, only the plant support inserts and plant shoots cover the base of the

trays.

Measurements. Carbon dioxide concentrations were monitored continuously using

Anarad (Santa Barbara, CA) model 203 infrared gas analyzers (IRGAs), with all sample

gas streams being returned to the main chamber. IRGAs were calibrated with a "zero" (N2)

and 1010 ppm span gas before and after the test and the appropriate corrections added to

the leak calculation. All gas analyzers are guaranteed accurate to + 1% full scale (+ 25

ppm). Atmospheric leakage rates were calculated using the approach of Sager et al., 1988

(see also, Acock and Acock, 1989) and assumed a chamber volume of 112.6 m 3 (Sager et

al., 1988). When trays were left uncovered, condensate tanks from the lower and upper air



handling systems were emptied at 12-hr intervals (06:00 and 18:00 each day) and volumes

recorded. For tests when trays were covered with the plant "germination" covers, tanks

were emptied only at the end of the experiment.

RESULTS AND DISCUSSION

Atmoseheric leakage rate. Hourly averages of CO 2 concentration and atmospheric

pressure during a leak test in the BPC are shown in Fig. 1. As might be expected in a

tightly sealed system with a fixed volume, atmospheric pressure changes occurred in con-

junction with temperature changes (Barrante, 1977). Warming caused a positive pressure

event, while cooling caused a negative pressure event. When chamber temperatures were

held constant, only a small pressure event was observed, which likely reflects adjustments

by the heat exchange system in response to the lamps being turned on or off. In all cases,

chamber pressures eventually equilibrated with ambient, suggesting that mass exchange

(leakage) had occurred.

Two hours prior to the 26°C cycle, CO 2 concentration equaled i898 ppm (Fig. 1); after

24 hours, CO 2 concentration had decreased to 1754 ppm (2 hrs prior to the 23°C light

cycle). Assuming the leakage occurs in a logarithmic fashion against an external gradient

of 350 ppm, the average leak rate (L) for cycling thermoperiod would then equal:

q¢

L: 1 x  Fclc=1
/ 1

(t2"tl) Lq" c..bJ

= ._1 x in [1898 - 350]
/ !

24 hr 11754- 350J

= 1 x in [1548"] = 0.098
I---I

24 hr 11404J 24 hr

= 9.8% of chamber volume per day

(for the 26°C / 20°C thermoperiod)

4



Two hours after the beginning of the 23°C light phase, CO 2 concentration equaled 1752

(Fig. 1); after 24 hours, CO 2 concentration had decreased to 1653 ppm. In this case,

leakage rate (L) would then equal:

L- 1 x ln[ 1752- 350]

24 h--'_ [ 1653- 3_0J

= 1 x 1n[i402]= 0.073

24 hr [ 1303.1 24 hr

7.3% of chamber volume per day

(for constant 23°C temperature)

These results suggest that leakage from the BPC is slightly higher with a diurnal ther-

moperiod in comparison to isothermal conditions-about 1.5% in this case. Using Gay-

Lussac's Law (Charles' Law) relating absolute temperatures and volumes for ideal gases

(Bah'ante, 1977), the change in volume (/.e., leakage after the pressure difference has

returned to near zero) resulting from the temperature change can be estimated, where:

V_/T I=V 2/T 2 or V 2=(VxT2)/T1

(where Vx and V 2 and T 1 and T z equal the volumes

and temperatures in °K at times 1 and 2)

Then for the BPC (see Sager et al., 1988):

V 2 = (112.6 m 3) (299°K) / (293°K)

V 2 = 114.9 m 3

The amount leaked would then = V 2 - V 1

= 114.9 m 3 - 112.6 m 3 = 2.3 m 3



This is equivalent to about2% of the BPC volume being leaked just from a 6°C tem-

perature change each day, and this closely matches the 1.5% difference observed between

the cycling thermoperiod and isothermal conditions tested. It is interesting to note that

during the positive pressure event (e.g., from 6°C warming; Fig. 1), a volume of about 2.3

m 3 would have leaked "outward", while during a negative pressure event, about 2.3 m 3

would be drawn into the chamber. This would result in a net exchange of 2.3 m 3 during

each 24-hr cycle. One would expect to see a noticeable drop in CO 2 concentrations after a

cooling event as a result of the dilution from incoming 350 ppm CO 2 gas (/.e., air around

the chamber), and such a drop appears in Fig. 1. However, an apparent increase in CO 2

also can be seen when going from 20°C to 26°C, creating a "square-wave" pattern of CO 2

concentration in response to temperature. This suggests that there may be some persisting

pressure effects on the IRGAs (e.g., changes in gas return line back pressure), and direct

pressure measurements should be taken close to the IRGAs to confirm this. Assuming the

gas stream in the IRGAs was at a constant temperature, the density of CO 2 in the analyzers

would then be directly proportional to pressure (Jarvis and Sandford, 1985). Thus a pres-

sure change of 320 Pa (Fig. 1) would change the density of the gas in the IRGA by ap-

proximately (320 Pa/101300 Pa), or 0.32%. At a concentration of 1700 ppm, this would

result in an apparent 5.4 ppm change in concentration, which in turn could change leakage

calculations by 0.4% for a 24-hr period.

Another potential source of error would be loss of CO 2 in the condensate water

produced on the cold coils; however, with a solubility of 0.88 ml CO 2 per ml of I-I20 below

an atmosphere of pure CO 2 at 20_C (Forsythe, 1969), at 1700 ppm (average) CO 2 con-

centration, the chamber would then lose 0.88 x 0.0017 = 0.0015 ml CO 2 per ml H20. If 37

liters of condensate were lost per day (Table 1), then (0.0015 ml CO 2 per rnl H20 ) x

(37,000 ml H20 per day), or 55.5 ml CO 2 would be lost per day. This would amount to

0.055 liters / 112,600 liters, or 0.5 ppm CO 2 loss from the chamber, which would be insig-

nificant with regard to the leakage test.
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A comparison of leakage rates during the middle portions (_e., avoiding transition pe-

riod) of the 26°C (light) and 20°C (dark) cycles showed that leakage was slightly higher

during the 26°C period (9.5% vs. 8.0%) (Fig. 1); however, a second test (data not shown)

showed little difference and further measurements would be needed to compare rates at

different temperatures.

It should be noted that the analyzers used to monitor CO 2 were accurate to only

+ 1% full scale and readings were subject to fluctuations from small pressure events

(typically < 50 Pa) as a result of temperature control within the system (Fig. 1). Thus there

is a degree of imprecision in the leakage estimates. In practice, however, the error can be

minimized by 1) using long-term data sets (we typically used 24 to 72-hr tests), 2) avoiding

readings during changing pressure, and 3) correcting for any zero or gain drift after the ex-

periment (Sager et al., 1988). The fact that both the 9.8% and 7.3% daily leakage rates ap-

proximately match values determined in February and May of 1990 (J.H. Drese, un-

published) and the 5% to 10% leakage rates determined over the past two years (Wheeler

et al., 1990) adds a degree of confidence to these estimates. In addition, the findings con-

firm that no major changes occurred with regard to system closure over the past two years.

Condensate. Condensate production rates from the chamber (when no tray covers

were used) are shown in Table 1. Despite differences in temperature, condensate produc-

tion from the chamber remained close to 37 liters per day. When acrylic germination

covers were placed over the trays and the series of temperature/light treatments was

repeated, condensate production for the entire test (65 hrs) was reduced to 20.6 liters, or

7.6 liters per day. This indicates that direct evaporation was indeed responsible for the

condensate production (as opposed to residual water in the air ducting or a leak in the heat

exchange coils). Interestingly, even with tray covers present, some water can still evaporate

from the trays, indicating that the covers are not perfect seals.



The ratesof condensate production from the uncovered trays in an empty chamber

were somewhat higher than expected, based on the amourit of directly exposed water sur-

face in the chamber. Exposed water surfaces were limited to gaps (approximately 2 to 4

mm wide) along the edges of the tray inserts and any uncovered portions of the plant sup-

port strips (Prince and Knott, 1989). In addition, the water level was recessed from 3 to 4

cm below these gaps in the tray inserts. Another potential source of water would be from

air in the headspaces above the nutrient solution tanks, which are atmospherically con-

netted (closed) to the chamber by a 5.7-cm PVC pipe. However the headspace volumes

represent less than 0.3% of the chamber volume and air exchange rates were considered to

minimal.

Condensate production with full plant stands can reach 100 to 150 liters day 1 for the

entire chamber, depending on environmental conditions (Wheeler et al., 1990). It has been

assumed that most of this was due to plant transpiration, but results from the tests reported

here suggest that this may not be true, particularly early in growth when the plant canopy is

incomplete. It is likely, however, that the contribution from direct evaporation of nutrient

solution decreases during plant experiments as the stems and leaves begin to 1) shade the

tray tops, thereby decreasing direct radiation of the trays, and 2) decrease air circulation at

the surface of the trays. The latter would create a boundary (stagnant) layer at the tray top,

thereby reducing the humidity gradient immediately above exposed areas of water.

However, both of these tenets remain to be tested.

Vapor pressure deficits (difference between ambient water vapor pressure and

saturated water vapor pressure) ranged from 7 to 13 mb, and averaged 10 mb for the se-

quence of 26°C / 20°C and constant 230C regimes. In a repeat test using only 26°C / 20°C

treatments but with slightly higher humidities (average vapor pressure deficit of 9 mb), con-

densate production averaged about 30 liters per day, pointing out the strong influence of

vapor pressure deficit on evaporation rates in the chamber.



As seenin pastmeasurements,morecondensatewater isgenerallyproduced from the

lower air handlingsystem,suggestingthat theheatexchangesystemsfor the two air hand-

lersareworking differently (e.g.different amountsof hot and chilled water flowsbetween

the upper andlower exchangers).The higher ratesof condensateproduction from the

lower chamberhave also been noted during plant tests (C. Mackowiak and L. Siegriest,

unpublished). Ultimately, this should be detectable as differences in absolute humidity be-

tween the upper and lower systems.

RECOMMENDATIONS

With the addition of pneumatic door seals, atmospheric leakage rates in the BPC have

remained relatively constant (5% to 10%) over the past two years (1989 through 1990; J.H.

Drese, unpublished; Wheeler et al., 1990). Further improvements will likely require major

changes to the physical system, e.g., improvement of seals around blower shafts or elimina-

tion of atmospheric pressure transients that occur during temperature changes. Control of

pressure events could be achieved by only conducting isothermal experiments, but this

would be restrictive regarding the crop physiology. Alternative pressure controls might in-

clude: 1) allowing system volume changes to avoid pressure changes (e.g. addition of a

bladder or bellows system; Hand, 1973), or 2) addition of an active system to compress gas

during positive pressure events and release compressed gas during negative events (J.C.

Sager, unpublished). The second approach would maintain a fixed volume but effectively

partition pressures (and mass) within the system and is currently under design for installa-

tion to the BPC (J.C. Sager, unpublished).

Regardless of further improvements in leakage rate for the BPC, the current system

performance is more than adequate for calculations of plant stand CO 2 exchange rates,

which typically can be measured from l-hour data sets. The typical error due to leakage

over I hour would amount to 8% day 1 / 24 hrs day -1, or 0.3% hour _ and thus can be ig-

nored for short-term measurements (Wheeler, 1990). Whether the 5% to 10% leakage is



acceptablewith regardto studyingaccumulationof low-level contaminantsremainsto be

tested. Resultsto datewith wheat,lettuce,and soybeancropshaveshownthat closureis

sufficient to causeethylenegasproducedbythe plantsto accumulateto levelsgreater than

100X ambient levels(B. Vieux unpublished;Wheeler et al. 1990).

Humidity control discrepencies between the two chambers should be resolved in order

to conduct more precise analyses of the water fluxes. Chilled water flow rates to the heat

exchangers should be balanced between the upper and lower systems (differences currently

exist) and new control algorithms (PID statements) might be tested. To date, supplemen-

tary humidification (other than from the plant transpiration) has often been deactiviated

during crop tests to facilitate water budget keeping, and this has impeded more accurate

humidity control. If additions of water for supplemental humidification can be monitored

accurately, humidifiers could be activated throughout plant tests.

Further testing will be required to precisely define the amounts of water coming from

direct evaporation versus leaf transpiration with actively growing plant stands. However,

this remains an academic question with regard to system performance since the combined

evaporation of water, regardless of the origin, is directly measureable as condensate. One

possible approach to separating the two would be to measure condensate production with

and without surrogate (non-transpiring) plants, which could create a similar shading and

boundary layer effect at the tray surface.
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Table I. Water condensed from the heat exchange systems of the Biomass

Production Chamber while nutrient solution was circulated through culture

trays without plants. Plant.support inserts were present but no germination
covers were used (see text).

Date/Time Conditions Upper** Lower** Chamber Daily

for prior System System Total Production
12 hours

(liters) (liters) (liters) (liters�day)

11/16 06:00 dark/20°C ---Condensate tanks emptied---

11/16 18:00 light/26°C 6.0 13.0 19.0

11/17 06:00 dark/20°C 7.1 11.2 18.3

11/17 18:00 light/23°C 7.3 11.5 18.8

11/18 06:00 dark/23°C 6.6 11.8 18.4

37.3

37.2

Wr

Relative humidity ranged from 60% and 75% during testing.

Refers toupper or lower air handling systems used for air circulation
and temperature and humidity control.
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